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Göteborg, Sweden 2005



Searching in a Small World
Oskar Sandberg

c©Oskar Sandberg, 2005

NO 2005:52
ISSN 1652-9715

Division of Mathematical Statistics
Department of Mathematical Sciences
Chalmers University of Technology and Göteborg University
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Abstract

The small-world phenomenon, that the world’s social network
is tightly connected, and that any two people can be linked by a
short chain of friends, has long been a subject of interest. Famously,
the psychologist Stanley Milgram performed an experiment where
he asked people to deliver a letter to a stranger by forwarding it
to an acquaintance, who could forward it to one his acquaintances,
and so on until the destination was reached. The results seemed to
confirm that the small-world phenomenon is real. Recently it has
been shown by Jon Kleinberg that in order to search in a network,
that is to actually find the short paths in the manner of the Milgram
experiment, a very special type of a graph model is needed.

In this thesis, we present two ideas about searching in the small
world stemming from Kleinberg’s results. In the first we study the
formation of networks of this type, attempting to see why the kind
of connections necessary may arise naturally. A different criterion
on the network which also makes the efficient searches possible is
derived, and based on it an algorithmic model is proposed for how
searching can become possible as a network evolves.

In the second paper, we propose a method for searching in small-
world networks even when the participants are oblivious to their own
and others positions in the world. This is done by assigning nodes
positions in an idealized world based on the clustering of connections
between them, and then searching based on these positions. The
problem is motivated by applications to computer networks, and our
method is tested on real world data.
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Chapter 1

Introduction

1.1 Milgram’s Small-World Experiment

It has almost become cliché to start out a work on random networks
with a reference to experimental psychologist Stanley Milgram’s fa-
mous small-world experiment. Yet, since the experiment has been
the catalyst for so much of the thought about networks that has
followed it, it is impossible to not do so.

The small-world phenomenon, which had been discussed already
before Milgram proposed his experiment, is based on an idea famil-
iar to most people. It says, in a nutshell, that our social world is
held together by short chains of acquaintances - that even complete
strangers, though they may not have a mutual acquaintance, will be
linked as friends of friends of friends through just a few steps. Most
people have anecdotes to this effect, and the expression “it is a small
world” has become part of everyday speech.

In order to explore this matter further, Milgram proposed a sim-
ple experiment. Starting with volunteers picked at random from
a city in the American mid-west, he would give them packages in-
tended to be forwarded to a target of his choice by mail. The rules
had a catch however: recipients of the package could not send it to
just anybody, nor just directly to final target, but had to send it to
somebody with which they were acquainted (defined, for the exper-
iment, as somebody with which they were on first name basis) [28]
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[34].
Milgram and his associates conducted the experiment several

times with different starting groups (from Wichita in Kansas, Om-
aha in Nebraska, and Boston) and several targets (a stockbroker in
Boston, and the wife of Divinitees student at Yale). The reported
results were, at first glance, a stunning confirmation that the world
really is small: the successful chains found their way from person to
person in a strikingly small number of steps. The number of steps
that was cited as the average in one of studies, six, so caught the
peoples imagination that the term “six degrees of seperation” has
become part of our cultural folklore.

With time, the so called “small-world phenomenon” has reached
beyond psychology and sociology. In recent years especially, much
work has been done on explaining the phenomena with mathemat-
ical methods. This started with work aimed at showing that ran-
dom graphs have a small diameter [6][12], continued through the
celebrated small-world models of Watts and Storagtz [37][35], and,
importantly for the present work, those of Jon Kleinberg [23] [24]. In
recent years the field has become extremely popular, with hundreds
of papers produced annually.

As noted above, Milgram’s experiment is the starting point of
almost all small-world discussion, and few papers come without a
reference to the 1967 article (from Psychology Today, a popular mag-
azine rather than a scientific journal) describing it. The success of
the experiment, and that we really do live in a world where people
can find short chains of friendships between one another, has become
part of the accepted canon motivating the theoretical work.

It is worthwhile, however, to take a step back and consider what
Milgram actually found. The whole story is, as always, somewhat
more complicated than the popular anecdote1. The problem, it turns
out, is that while successful chains really were short in the experi-
ments, the number of successfully completed chains was very small.
In his first study, which started with people selected through a news-
paper add in Wichita, Kansas, and aimed to deliver a folder to the
wife of a divinities student at Yale, only three of the sixty chains that
Milgram started were successful. In the later study, starting with
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people in Nebraska and Boston, the success rate varied between 24
and 35 percent: substantially better, but still hiding a large propor-
tion of the chains. Part of the reason for the better success rates in
the second round of experiments, it seems, was that Milgram went
out of his way to make the parcel seem valuable: a dark blue passport
with Harvard University written in gold letters on the cover.

In an article by psychologist Judith Kleinfeld [25], a large num-
ber of other problems with the study are cited. The subjects were
selected in ways that made them less likely to be truly random sub-
jects, and several replications of the experiment, where the success
rate was too low to draw any conclusions, were never published. Kle-
infeld also concludes that while many similar studies have been con-
ducted (with varying success) in specialized fields and single cities,
she could at the time find no large scale replication of the small-world
experiment. In fact, she speculates, from a psychological perspective
there may be two different small world phenomena worth studying:
not only why and whether we form friendships so that we world re-
ally is small, but also why the idea that we do is so compelling to
us. The latter, of course, is not a question that mathematical work
can be of much assistance in answering.

Since Kleinfeld’s article was written, however, a large scale repli-
cation of the small-world experiment has been carried out using the
Internet. Dodds et. al. at the Columbia University small-world
project2 have solicited volunteers to start chains aimed at reaching
18 preselected targets in 13 countries [13]. Perhaps once again reflect-
ing the popular allure of the concept, they got a very large number
of volunteers. 98,847 signed up for the Columbia experiment, and of
these 25 percent actually went on to start chains.

While the large number of chains seems promising, the observed
success rates make those achieved by Milgram seem stellar. Of the
24,163 chains started, only 384 (a little over 1.5 percent) actually
reached their intended destinations. This can be considered to sup-

1Readers of Swedish may, for more exposition about the experiment, turn to
the chapter on the topic in [20]. Also Kleinfeld’s paper [25], cited below, contains
a thorough, critical, discussion of the topic.

2http://smallworld.columbia.edu
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port Milgram’s hypothesis that the success rate depends on the per-
ceived value of the parcel: few, if any, people will see much value
in an Internet chain letter. For the completed chains, the average
of steps was 4.05, which again sounds good, but, as the authors of
the study themselves note, must be considered misleading due to the
conditioning on success.

The problem is, as should be clear to most observers, one of pos-
itive self selection. Since one would expect chains to become more
likely to fail with every person they pass through, the large percent-
age of failures masks most of the longer chains from the average.
Indeed, if every chain were to fail once it reached some fixed, small,
number of steps, the conclusion that chains are short conditioned
on success would mean nothing: the very fact that they succeeded
implies that they were short.

Mathematically, this is a simple application of conditional proba-
bility. It holds that, if we let L be the number of steps a chain takes,
and A the event that it succeeds, then

P(L = ` and A) = P(A |L = `)P(L = `).

From this we can express the true probability of a chain having length
` as:

P(L = `) =
P(L = ` and A)

P(A |L = `)
=

P(A)
P(A |L = `)

P(L = ` |A).

Since P(A |L = `) is expected to be small for large values of `, we
can expect these values to be underrepresented in the data compared
to their true frequency.

The advantage of the Internet based experiment over previous,
letter based ones, is, however, that the use of the computer network
allowed the Columbia team to track the chains at every step. This
allowed them to see where and at what rate queries terminated.
The findings show that the number of people of who chose not to
continue the chain stayed constant at around 65 percent for all steps
after the first. This would seem to indicate that it is user apathy
and disinterest, rather than a difficulty or frustration in carrying out
the experiment, that causes attrition of the chains. Using this data,
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Dodds et al let:

P(A|L = `) =
`−1∏

i=0

(1− ri).

with ri denoting the proportion of chains that were discontinued in
each step (thus meaning that P(A|L = `) ≈ 0.35`). The formula
above then makes an estimate of L’s true distribution possible. The
upper tail the distribution is difficult to estimate due to a lack of
data (none of the chains started lasted more than eleven steps), but
a median value of L, based on the data, is calculated as 7. In other
words, even in a similar experiment with no attrition, we should
expect half the chains to complete by the seventh step.

So where does this leave the world? Most probably, the data
would seem to indicate, it is indeed small, at least in many cases. But
it is also a lot more complicated than a single number or experiment
can explain, and the mythical “six degrees” are likely to remain just
that. In the words of the Columbia team:

Our results suggest that if individuals searching for re-
mote targets do not have sufficient incentives to proceed,
the small-world hypothesis will not appear to hold, but
that even a slight increase in the incentives can render
searches successful under broad conditions. More gen-
erally, the experimental approach adopted here suggests
that empirically observed network structure can only be
interpreted in light of the actions, strategies, and even
perceptions of the individuals embedded in the network:
Network structure alone is not everything.

1.2 The Mathematics of Small Worlds

Mathematical exploration of the small-world problem predates even
Milgram’s experiment, but development was initially slow. The prob-
lem is known to have been discussed in the sixties at MIT, leading to
a paper by I. de Sola Pool and M. Kochen, but because of a lack of
progress it was first published in 1978 [12]. Since then a lot of work
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has been done, especially through computer simulation, but many of
the theoretical questions remain open.

Seen from a mathematical perspective, the small-world phenomenon
is a problem of graph theory3. The question explored in the experi-
ment becomes one of measuring the distances between vertices in a
graph, where the distance between two vertices is the length of the
shortest path connecting them (so called geodesic distance). One
wants to bound the mean such distance, or, ideally, the maximum
distance between any two vertices, also known as the graphs diame-
ter.

The most common model for random graphs, attributed, alter-
natively to Erdös and Renyi [16] and to Solomonoff and Rapoport
[33] is taking a set V of vertices, and connecting each disjoint pair
of vertices with probability p. These graphs have many interesting
properties with have been source of much study in probabilistic com-
binatorics [4] [7] [22]. In particular, there exists p for which there
is a giant connected component of size Ω(n), and the diameter does
indeed scale logarithmically in size.

Such completely random graphs, however, are seldom very good
models for the type of networks one finds in nature. While they have
a low diameter, they do not have another important property of most
observed networks: clustering. Clustering is most easily stated as the
principle that two vertices that share a common neighbor are more
likely to be connected than two vertices chosen at random from V .
This is obviously not the case in the above model, where all vertex
pairs are independently connected with the same probability.

Formally, one defines the clustering coefficient of a (random)
graph as the average (expected) portion of a vertex’s neighbors which
are also connected to each other. Clearly C = 1 for a complete
graph, C = 0 for trees, and C = p for random graphs of the type

3The concept of a structure of points and the lines connecting them is ubiq-
uitous is many scientific fields. It is called a “graph” in mathematics, which the
points denoted as “vertices”, and the lines as “edges”. In computer science it
is usually called a “network”, which “nodes” and “links” or “connections”. In
physics such a structure is a “system”, which has “sites” and “bonds”. Finally,
in sociology one usually refers to a network of people, or “actors”, and contacts,
friendships, or “ties”.
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discussed above. Non-complete graphs with higher clustering coef-
ficients can be constructed, most easily through so called nearest-
neighbor graphs.

Nearest-neighbor graphs are constructed by starting with a finite
regular lattice, which in 1 dimension is just n nodes set in a line,
often closed on itself (so the line becomes a cycle), and adding edges
from each vertex to the k nearest in the lattice. Such a network can
easily be seen (see [29]) that, if k < 2

3n:

C =
3(k − 2d)
4(k − d)

where d is the dimension of the lattice.
In modern terminology, a small-world graph is one which displays

both the small diameter of the random graph, and the heavy clus-
tering of organized nearest-neighbor graphs. Of course, the terms
“small diameter” and “heavy clustering” are rather ambiguous, and
have often been used somewhat loosely. However, “small diameter”
is usually understood to mean that the diameter should grow loga-
rithmically (or at most polylogarithmically) in the size of the graph,
while “heavy clustering” usually can be taken to mean that the clus-
tering coefficient should not fall considerably when the graph grows
but the number of edges per node stays constant.

The small-world model of Watts and Strogatz from 1998 [36] is
an explicit construction of such graphs. They start with a struc-
tured, clustered graph, such as a nearest-neighbor graph, and then
“re-wire” a proportion q of the edges by changing one end to a uni-
formly random destination. By allowing q to vary from 0 to 1, one
can interpolate between a structured model and one very similar to
the random graphs of Erdös and Renyi. Through computer simula-
tion, Watts and Strogatz concluded that for a large portion of the q
values, the resulting graphs would have both properties identified as
characteristic of the small world.

The rewiring model is, however, rather difficult to analyze analyt-
ically. Something more approachable is provided by the subsequent
model of Newman and Watts [31], where extra, random “shortcut”
edges are added to an existing graph, rather than rewired from ex-
isting edges. The simplest version of this model is to start with
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a k nearest-neighbor graph on a one dimensional cycle, and a ran-
dom matching of the vertices to provide exactly one shortcut edge at
each vertex. The shortcut adds 2k additional neighbor pairs of each
vertex, of which we may assume few if any will be connected. Thus:

C ≥ (k − 2)
2(k − 1)

where we approach equality when n >> k. Bollobas and Chung [8]
proved already in the 1980’s that a cycle with a random matching
has a diameter which is with high probability θ(log n), so certainly
this graph has at most logarithmic diameter, making it a small-world
network.

With this example in mind, it isn’t difficult to imagine that the
same thing holds for similar mixes of structured and unstructured
graphs. Rigorous results about this have been relatively elusive,
however, with most published results relying on simulation or so
called mean field approximations. Summaries of existing results can
be found in the reviews by Newman [30] [29], as well as in a draft by
Durrett [14] which also attempts to collect some of the more rigorous
results available.

1.3 Navigation

The small-world models of the 1990’s go a long way toward illustrat-
ing the type of dynamics that should be expected from real world
networks with a short diameter. They have stimulated a lot of study,
and have been a triumph in the sense of managing to explain a lot
of different real world networks, arrising in fields from phsyiology to
sociology to physics, with simple models.

It should be noted, however, that there is a rather large gap
between what can be said about these models, and what the Milgram
experiment perhaps showed about the world’s social network. While
the combination of structured network and shortcuts can explain
that there is are short paths between people, Milgram’s experiment
would seem to illustrate not only that these paths exist, but that
people, working with very little information, can find them.
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Jon Kleinberg tackled the questions in 2000. The result was a
seminal paper [23] in which he showed that the previous small-world
models could, in fact, not explain this fact. It is simply not possible
for any algorithm, working only with local knowledge of the graph,
to efficiently paths when a grid-like graph is subjected to uniformly
random rewiring or the addition of uniformly distributed shortcuts.
The expected number of steps to find one point from another is lower
bounded by a root of the network size, and is thus exponential in
the diameter.

Moving on from this, Kleinberg allowed for a wider family of
(semi-) random graphs. Similarly to Newman and Watts, he starts
with an underlying grid and adds shortcut edges, but Kleinberg al-
lows the probability that two vertices are connected by a long edge
to depend on the distance between them in the grid. In particular,
the probability that two non-adject vertices x and y is allowed to
belong to the family:

d(x, y)−α

∆α
(1.1)

where d is the distance between the vertices in the underlying grid,
and ∆α is a normalizer. In this family, he showed it is the case where
α equals the dimension of the grid, and only that case, which allows
for efficient navigation (finding paths from one vertex to another in
a polylogarithmic number of expected steps).

1.3.1 Why Navigation Matters

Before proceeding to presenting Kleinberg’s results in more detail,
we diverge to discuss why these results are important. At first they
may seem mostly like a mathematical curiosity - it was, after all, not
people’s ability to find paths between each other that Milgram set out
to measure. He was interested in the original small-world problem:
are we closely connected to everyone else? The quality which many
people find so appealing, that we may all be linked as friends within
a few steps, has little to do with algorithmic nature of how such
paths are found. Similarly, many of the applications where a small
graph diameter is important, such as those from epidemiology, have
little to do with finding paths.
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That Milgram chose to let the people taking part themselves do
the searching was simply experimental necessity - nobody had global
access to the worlds social network so no better way of routing was
possible. This is less true today then it was then, and people have
studied social networks in cases where the entire graph has been
revealed [2] [26] - we do, for particular cases, in the second paper of
this thesis.

The importance of the particular question of navigation has grown
since Milgram did his initial work, however. Milgram’s ideas were
first published a year before the early ancestor of today’s Internet
came into existence, but since then this medium has grown into a
ubiquitous and essential part of our lives. Systems like the Internet
(whose name is derived from “Internetworking protocol”, meaning
a protocol meant to connect many smaller, clustered, networks) de-
pend by their very nature on navigation, or, as it is commonly called,
routing. Complicated addressing and router system are set up ex-
actly solve the problem of sending packets of information between
hosts in the network using efficient paths.

Given this, it is not surprising that simple probabilistic models
which allow for efficient routing should be of interest. The author of
this work himself first approached these problems while trying to find
ways to efficiently organize peer-to-peer overlay networks (networks
of users connected over the Internet) in distributed ways. The second
paper presented below illustrates techniques of which combine these
ideas with those about social networks, exploiting the small-world to
allow routing in networks that directly connect only friends.

1.4 Kleinberg’s Results

In this section we will review some of the navigability results that
form the basis of the continued work covered later in the thesis. We
will show, using Kleinberg’s proofs from [23], that the family given
by (1.1) allows for polylogarithmic routing at, and only at, one value
of the α. Kleinberg originally did his work in a two dimensional
setting - inspired by Milgram’s experiment - but where needed we
shall work with a one dimensional base grid for simplicity. Similar
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arguments apply for grids of any dimension. The one dimensional
situation is particularly well explored in [5], but we use Kleinberg’s
method rather than their abstractions below.

To start with we need to define what Kleinberg calls a decentral-
ized routing algorithm. This means, in essence, that the routing at
each vertex takes place using only locally available information, and
no centralized authority with global knowledge is involved. If we let
a query (message) travel through the network, we define {Xt}0≤t≤T

as the position of the query at step t. Y = X0 is the starting point,
and for the random time T , Z = XT is the destination.

Definition 1.1. A method for selecting the next step of a query
{Xt}0≤t≤T is a decentralized algorithm if, the choice of Xt+1 de-
pends only on:

1. The coordinate system and connections of the underlying grid
structure.

2. The coordinates in the grid of the target z.

3. The coordinates in the grid of Xj and all Xj’s neighbors, for
0 ≤ j ≤ t.

While the concept in some ways characterizes algorithms which
work locally (as people do when forwarding messages to friends) it is
a little misleading to think of these as local routing algorithms. For
one thing the last criteria is looser, allowing one to use the entire
history of the query4, and secondly the knowledge about the grid
and coordinate system is in some ways global. Decentralized routing
when no knowledge about the positions is given is a problem we
tackle in the second paper of this thesis.

We now let, as stated, the underlying grid be a closed directed
cycle of n vertices. For simplicity, we will also move from un-directed
graphs to directed, and we assume the cycle consists of directed
clockwise edges. Distance with respect this grid is the circular distant
along the direction of the links. Each vertex chooses the destination
of an additional directed edge, which we henceforth refer to as a

4This strengthens the result, since it is not needed for the upper bounds
presented, but the lower bounds hold in spite of it.

11



shortcut, independently with probability given by (1.1) for some α5.
We let A denote a decentralized algorithm, and τA = EA(T ) be the
expected number of steps it takes to find the destination under this
algorithm.

Theorem 1.2. For any decentralized algorithm A:

• τA ≥ k1(α)n(1−α)/2 if 0 ≤ α < 1.

• τA ≥ k2(α)n(α−1)/α if α > 1.

where k1 and k2 depend on α but not on n.

This, of course, leaves out the critical case where α = 1, which we
discuss below. It is very much a case of the first condition leading to
too few shorter shortcuts, and the second leading to too few longer
shortcuts, which is exactly what the method of proof will be in each
case.

Proof. The case 0 ≤ α < 1: First we note that in this case, we can
lower bound ∆α by

n−1∑

i=1

x−α ≥
∫ n−1

1
x−α (1.2)

= (1− α)−1((n− 1)1−α − 1) (1.3)
≥ ρn1−α (1.4)

for some constant ρ depending on α but not n.
Now we let U be the set of nodes from which the target z is

within distance nδ where δ = (1− α)/2. Of course, |U | ≤ nδ.
Now define an event, A, as the event that within λnδ steps, with

λ = ρ/4, the message reaches a node whose shortcut leads to a
node within U . The probability of any particular shortcut existing
is ≤ 1/∆α, so if we let Ai denote the event of finding such a shortcut
in the i-th step, then

P(Ai) ≤ |U |
∆α

≤ nδ

ρn1−α
.

5All the results discussed below hold also when there is more than one shortcut,
and when the cycle is a k nearest-neighbor graph. Only the values of the constants
differ.
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Since A =
⋃

i≤λnδ Ai it follows that

P(A) ≤
∑

i≤λnδ

P(Ai)

≤ λn2δ

ρn1−α

=
1
4

Now we let B be the event that distance from the starting point
to the target, d(Y, Z) > n/2. Since we are choosing starting points
uniformly, this gives

P(B) ≥ 1
2
.

Since P(Ac) > 3/4, elementary probability tells us that:

P(Ac ∩B) ≥ 1
4
.

Now consider the T , the number of steps until we reach our tar-
get. The event T ≤ λnδ cannot occur is Ac ∩B does, since in order
to reach the target in less then λnδ steps, we must at some point
before then find a shortcut ending in U .

P(T ≤ λnδ |Ac ∩B) = 0 ⇒ EA(T |A ∩B) ≥ λnδ.

And by restriction it then holds that

τA = EA(T )
= EA(T |Ac ∩B)P(Ac ∩B)

=
1
4
λnδ.

A suitable choice of k1(α) now gives the result.

The case α < 1: We start by bounding the probability that a node
u has a shortcut destination v that is more than m steps away. Let
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ε = α− 1 > 0

P(d(u, v) > m) ≤
N−1∑

j=m+1

j−α

≤
∫ ∞

m
x−αdx

= ε−1m−ε

Now let γ = 1/(1 + ε), and Ai be the event that in the i-th step,
we find a shortcut longer than nγ . Also let µ = min(ε, 2)/4, and

A =
⋃

i≤µnεγ

Ai

be the event that we find such a shortcut in the first µnεγ steps. Now

P(A) ≤
∑

i≤µnεγ

P(Ai)

≤ µnεγε−1(n−γ)ε

= µε−1 ≤ 1
4
.

Similarly to the first case, we let B be the event that d(Y, Z) >
n/2, which means that P (Ac ∩ B) > 1/4. If Ac ∩ B occurs, then
T ≥ µnγε, because the total distance moved in the first µnγε steps
is ≤ µnεγ+γ = µn < n/2. Thus:

P(T > µnεγ) ≥ 1
4

whence τA = EA(T ) ≥ (1/4)µnεγ .

Now for the positive result. Let G denote the following decen-
tralized algorithm:

• At each step Xt, choose among the local neighbors and the
shortcut the node u such that d(u, z) is minimized. Let this be
Xt+1.

• Terminate when z is reached.

14



This is a known as greedy routing. We let g(u, v) = EG(T |Y =
u,Z = v) be the greedy distance from u to v.

Theorem 1.3. If α = 1, then for all vertices u and v, g(u, v) ≤
k3(log n)2.

Proof. Like before, we start by bounding the normalizer, ∆1:

∑

v 6=u

d(u, v)−1 =
n−1∑

i=1

i−1

≤ 1 + log(n− 1) ≤ κ log(n)

for some constant κ. For the proof, we divide the graph into “phases”
with respect to a vertices distance from z. We let each phase, Fj =
{v : 2j ≤ d(v, z) < 2j+1}.

Now, assume that Xt ∈ Fj , log2(log2(n)) < j ≤ log2(n). We
wish to find the probability that we will escape this phase with the
next step, ie that Xt+1 /∈ Fj . This will occur if the vertex at Xt has
shortcut with destination v s.t. d(v, z) ≤ 2j . Thus

P(Xt+1 /∈ Fj |Xt ∈ Fj) ≥
∑

d(v,z)≤2j

1
∆1d(X(t), v)

≥ 2j 1
∆12j+1

≥ 1
2κ log(n)

Now let Tj is the number of steps spent in phase j. Since we
will, in each step, find a shortcut taking us out of the phase with
probability at least 1/(2κ log(n)), and the shortcut at each vertex is
selected independently, it holds that, for log2(log2(n)) < j ≤ log2(n):

E[Tj ] ≤ 2κ log(n).

For j ≤ log2(log2(n)) a similar bound holds, possibly after modifying
κ, since we can spend at most one step at each vertex. It then follows
trivially that

E[T |Y = u,Z = v] ≤
log2 n∑

j=0

Tj ≤ log2(n)2κ log(n) = k3(log n)2.
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1.5 Summary of Contributions

This thesis consists of two works, both starting out from Kleinberg’s
rsults. The first, which is the primary work, discusses the nature
and formation of navigable small-world networks. In it, we propose
a distributional requirement, conceptually different from Kleinberg’s,
that also allows greedy routing in O(log2 n) time. This requirement
relates the probability that a vertex u has a shortcut to another, v,
with the probability that queries with destination v visit u. This
relationship generalizes naturally to any graph (although the proofs
presented do not always do so), and also leads us to propose a step-
wise re-wiring algorithm with similar marginal distributions. This
algorithm provides an interesting example of how navigable networks
may arise naturally.

The second paper tackles the problem of trying to route in Klein-
berg type networks if vertices do not start out with global knowl-
edge about their own and others position in the grid. We propose
a Markov Chain Monte Carlo algorithm where nodes discover their
positions, in a manner than then makes greedy routing possible. The
algorithm may have important applications to the development of se-
cure peer-to-peer communication networks, and has therefore been
the subject of much popular attention.
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Chapter 2

Neighbor Selection1

2.1 Introduction

2.1.1 Shortcut Graphs

Starting with the small-world model of Watts and Strogatz, rewired
graphs have been the subject of much interest. Such graphs are
constructed by taking a fixed graph, and randomly rewiring some
portion of the edges. Later models of partially-random graphs have
been created by taking a fixed base graph, and adding “long-range”
edges between randomly selected vertices (see [29] [31]). The “small-
world phenomenon”, in this context, is that graphs with a high di-
ameter (such as a simple lattice) attain a very low diameter with the
addition of relatively few random edges.

Jon Kleinberg [23] studied such graphs, primarily ones starting
from a two dimensional lattice, from an algorithmic perspective. He
allowed for O(N) long-range edges, and found that not only would
this lead to a small diameter (which was not surprising), but also
that if the probability of two nodes having a long-range edge be-
tween them had the correct relation to the distance between them in
the grid, the greedy routing pathlength between vertices was small as
well. Greedy routing means, as the name implies, starting from one

1This chapter is partly based on joint work with Ian Clarke, who originally
proposed the link updating scheme discussed in the later sections in conversation
with the current author.
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vertex and searching for another by always stepping to the neighbor
that is closest to the destination. That the base graph is connected
means that a non-overlapping greedy path always exists, so the ques-
tion regards the utility of the long range contacts in shortening this
path. Networks where one can quickly route between two points us-
ing only local information at each step, as with greedy routing, are
referred to as navigable.

For added simplicity, it is advantageous to replace the two di-
mensional lattice used by Kleinberg with a one dimensional ring of
vertices, and move to the directed case where edges follow a single
orientation. This means that the lattice distance is the number of
steps following the orientation of the ring from one vertex to another
- the distance from a vertex to the one “before” it is thus N − 1 for
a graph of size N . Bariere et al. [5] have performed a thorough
investigation of this setting, and calculated the order of the greedy
path length for when the probability of a long range contact edge ex-
isting between two vertices x and y is HNd(x, y)−r (d denotes lattice
distance, HN is a normalizing constant). The case r = 1 here cor-
responds to the single critical, navigable case of Kleinberg’s model
where greedy routing performs in O(log2 n) steps, other values of r
all lead to greedy path-lengths that are not polynomial in log N .

Initially, we will stay in the one-dimensional directed environment
for our work below. Later sections extend some of the results to a
wider class of graphs. In general, we will call graphs of the type
discussed shortcut graphs and use the less clumsy term shortcut for
the long range contact edges.

2.1.2 Contribution

While Kleinberg’s results are important and have been a catalyst
for much study, it is not fully understood how the rather arbitrary
distribution of shortcuts that they dictate might arise in practice.
In this work, we present an alternative distributional requirement
that associates the shortcut distribution with the hitting probabil-
ities of queries under greedy routing. We show that distributions
that meet this criterion, which we call “balanced distributions” have
O(log2 n) mean routing times, similarly to the critical case in Klein-
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berg’s model.
The relationship in this criterion naturally leads to a stepwise re-

wiring algorithm for shortcut-graphs. The Markov chain on the set
of possible shortcut configurations defined by this algorithm can eas-
ily be seen to have a stationary distribution with balanced marginals.
While the previous results cannot be directly applied to this case,
because the stationary distribution has dependencies between the
shortcuts at nearby nodes, we argue through heuristics and simu-
lation that these dependencies in fact work in our favor, and that
networks generated by our algorithm can be efficiently navigated.

2.1.3 Previous Work

In [24], Jon Kleinberg himself motivated why the necessary distribu-
tion for navigability might arise in nature by means of “group mem-
berships”. He showed that in a more generalized setting, structures
are navigable if two nodes are connected with a probability that is
inversely proportional the size of the smallest group they both pop-
ulate. That this should be the case is in some sense natural, since
the probability of knowing somebody may decrease with the size of
the group in which you know them. Similar arguments can be found
in [26] and [36].

A paper by Clauset and Moore [11] presents a different re-wiring
algorithm for the creation of navigable networks. Rather than as-
sociating shortcuts with the destinations of queries that hit a node,
they associate then with the end-points of queries that have not
found their destination within some threshold number of steps. They
show positive results for this algorithm using simulation, but do not
present any analytic results. In [15] a re-wiring algorithm for the
creation of so called scale-free (or power-law) graphs is presented.
This does not deal with clustering nor navigability, and no analytic
results regarding the stationary distribution are derived.

The Freenet peer-to-peer data network, presented in [9] and [10],
uses a similar method to update the links between peers as the al-
gorithm we propose here. The current work is in part inspired by
trying to apply the ideas from the design of Freenet to an environ-
ment more conductive to analysis. [39] previously related Freenet to
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the discussion of navigable small-world networks, but they worked
mostly on proposing modifications to the algorithm that resulted in
a more robust network, instead of looking more closely at the prop-
erties of Freenet’s neighbor sampling.

2.2 Results and Discussion

2.2.1 Distribution and Hitting Probability

We begin by considering some aspects of the hitting probabilities of
greedy walks in shortcut graphs. In this section we study only the
case where the base graph is a directed cycle, and the shortcuts are
additional directed edges. We will index the set of vertices V such
that the edges of the base graph are negatively oriented, in the sense
that there is an edge from x to x− 1 mod N for all x = 0 . . . n− 1.
The function d(x, y) gives the distance in the base graph from x to y.
It is not symmetric, for example d(x, x− 1) = 1 while d(x− 1, x) =
N − 1.

On top of this base graph, we will add one directed shortcut
starting at each vertex. We let γ be a configuration of such shortcuts,
that is γ : V → V . We let Γ be the set of all possible configurations,
and we call probability measures on that set shortcut distributions.

Given such a shortcut distribution, we define XY
Z (t) as a greedy

walk in the network from a uniformly chosen starting point Y =
XY

z (0) with a uniformly chosen destination Z. Below, we will in
particular be interested in the hitting probability of greedy walks
with specific destinations. We define this formally as:

h(x, z) = P(XY
Z (t) = x for some t|Z = z) (2.1)

Because we are dealing with a transitive base graph and uniform
choices of Y and Z, it holds that h(x, z) = h(d(x, z), 0). Thus we
will, without loss of generality, discuss only h(x, 0), which we simplify
to h(x) below.

Our results concern relating h(x) with the occurrence of shortcuts
between nodes. Immediately, however, we can see that h(x) gives us
the expected length of a greedy path. Since such a path can hit each
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point only once, it follows that if T is the length of a greedy path
from a random point to zero, then

T =
N−1∑

x=1

χ{XY
0 (t)=x for some t}

whence it follows that:

E(T ) =
N−1∑

x=1

h(x). (2.2)

We will call the expected greedy walk length τ = E[T ].
We can also prove the following:

Lemma 2.1. If the shortcut configuration is chosen according to a
translation invariant joint distribution, then h(x) is non-increasing
in x.

Proof. Let I ⊂ Γ × V be event consisting of all configurations and
starting points such that a greedy walk for 0 hits the point x + 1.
Now we translate all the coordinates of this set down one coordinate
(modulo N), and call the translated set J .

h(x + 1) = P(I) = P(J)

by definition and translation invariance. However, every element
in J corresponds to a starting point and shortcut configuration for
which the greedy walk hits x. To see this, we pick a starting point
y and configuration γ, such that (γ, y) ∈ I. This means that there
is an integer m and a path x0, . . . , xm such that x0 = y, xm = x + 1
and either

N − 1 ≥ γ(xi) > xi and xi+1 = xi − 1

or
xi > γ(xi) ≥ x + 1 and xi+1 = γ(xi)

for all i = 0 . . .m. The corresponding configuration in J has a similar
path x′0, . . . , x

′
m (x′i = xi − 1) where x′0 = y− 1 , x′m = x and either:

N − 2 ≥ γ(x′i) > x′i and x′i+1 = x′i − 1
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or
x′i > γ(x′i) ≥ x and x′i+1 = γ(xi)′

for all i = 0 . . . m. This means that starting in y − 1 will cause
the greedy walk to hit x. (Note that not every configuration and
starting point that cause greedy walks to hit x are necessarily in J ,
since γ(x′i) must be less than N − 2 since rather than N − 1 in the
first line).

It now follows directly that

P(J) ≤ h(x).

We now restrict ourselves to the more manageable case where
shortcuts are chosen independently at each point. That is to say
that there is some kernel `(x, y) such that:

P(γ) =
∏

x∈V

`(x, γ(x)).

We are interested only in kernels which are translation invariant, in
other words for which `(x, y) = `(d(x, y), 0). As with the hitting
probability, we will use just `(x) to denote `(x, 0).

With such a shortcut distribution, we may, for a given z, view
XY

z (t), as Markov chain on the set of vertices, with some transition
kernel Pz(y, x). As above, we will set z = 0, and drop the index in
the below calculations without loss of generality. The process hits
every point except z = 0 at most once, and we can let this point be
absorbing. The transition kernel P then consists of two mechanisms:
either we step to x which is less than y because it is the destination of
the shortcut from y, or we step to y−1 because y’s shortcut overshot
0. (That is, y’s shortcut leads to somewhere from which it is further
to 0 than y. In other words a point in {y +1, . . . , N − 1}.) It follows
that:

P (y, x) =





0 if x ≥ y

`(y, x) +
∑

ξ≥y+1 `(ξ) if x = y − 1
`(y, x) if x ∈ {0, . . . , y − 2}
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for y 6= 0. Pz(0, x) = χ{x=0}.
From the transition kernel, we can find a recursive formula for

the hitting probability h(x). It follows from the theory of Markov
chains that the hitting probability can be written as the solution to
a set of equations involving the transition kernel. Using the fact that
a greedy walk will never spend more than one time unit in each state
non-zero state, this can be written as

h(x) =
∑

ξ

h(ξ)P (ξ, x) + P(XY
0 (0) = x).

for all x. Using our values for P and noting that the last term is
simply P(Y = x) = 1/(N − 1), the above can be written as the
recursion formula

h(x) =
N−1∑

ξ=x+1

h(ξ)`(ξ − x) + h(x + 1)
N−1∑

ξ=x+2

`(ξ) +
1

N − 1
(2.3)

for all x = 0 . . . N − 2, and with boundary h(N − 1) = 1/(N − 1).
Thus it is possible to find h(x) for a given shortcut distribution `.

2.2.2 Balanced Shortcuts

We now look at a class of shortcut distributions with a certain prop-
erty. Consider a distribution ` such that:

`(x, z) =
h(x, z)∑N−1
ξ=1 h(ξ)

=
h(d(x, z))

τ
(2.4)

where h is given by (2.1). That is to say that the probability of
choosing a shortcut of distance x, is that same as the normalized
probability that x is hit when routing for 0. We will call this a
balanced shortcut distribution.

By plugging (2.4) into (2.3) we can see that for a balanced distri-
bution h (and thus `) must be the solution to an equation of N − 1
variables.

Distributions that are balanced, it turns out, lead to networks
with the same navigability properties as the critical case in Klein-
berg’s model. Our central result is:
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Theorem 2.2. For every N = 2k with k ≥ 4, the shortcut graph with
shortcuts selected independently according to a balanced distribution
has an expected greedy routing time

τ ≤ 2k2.

The proof method is similar to that of Kleinberg’s proof for har-
monic links, but the implicit definition of the shortcut distribution
requires a somewhat more involved approach.

Proof. Assume that τ > 2k2. We will show that for k sufficiently
large this always leads to a contradiction.

To start with, divide {1, . . . , N−1} into at most k disjoint phases.
Each phase is a connected set of points, each successively further
from the destination 0, and they are selected so that a greedy walk
is expected to spend as many steps in each phase. Thus, the first
phase is the interval F1 = {1, . . . , r1} where r1 is the smallest number
such that

`(F1) =
∑

ξ∈F1

`(ξ) ≥ 1/k

The second phase is defined similarly as the interval {r1 +1, . . . , r2}:
again being the smallest such interval so that `(F2) ≥ 1/k. Let m
be the total number of such intervals which can be formed, and let
FR denote remainder interval {rm +1, . . . , N−1}, if necessary (let it
be the empty set otherwise). By construction `(FR) < 1/k and the
total number of phases, including FR is ≤ k.

Before proceeding, we need to bound how much ` of the different
phases can deviate, since this will also tell us how much the expected
number of steps in each phase can differ. From (2.4) and the assumed
lower bound of τ , it follows that:

`(x) =
h(x)

τ
≤ 1

2k2

for all x. This implies that 1/k ≤ `(Fi) ≤ 1/k + 1/(2k2) for all
i ∈ {1, . . . , m}, and thus:

`(Fi) ≤
(

1 +
1
2k

)
`(Fj) (2.5)
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Figure 2.1: Illustration for the proof of Theorem 2.2. If a phase
covers less then half of the “remaining ground”, then the a shortcut
in the equivalent range takes us out of the phase.

for all i, j ∈ {1, . . . , m}. It also gives m ≥ k2/(k + 1)− 1.
Consider now Fm = {rm−1 + 1, . . . , rm}. We know that rm < N .

Assume that rm−1 ≥ rm/2. Fm then covers less than half of the
distance from rm to the target. In particular

rm − rm−1 − 1 ≤ rm−1

so the interval G = {0, . . . , rm − rm−1 − 1} is disjoint with Fm and
consists entirely of points which are closer to 0 than those in Fm.
Thus, if rm has a shortcut with destination in this interval, any
query which hits rm will leave Fm in the next step. See Figure 2.1.

We know the probability with which this occurs

`(rm, G) =
∑

G

`(rm, ξ) = `(Fi) ≥ 1/k.

Lemma 2.1 tells us that the probability of having a shortcut to G
cannot decrease for points less than rm, so for each vertex the query
hits within Fm, there is an independent probability of 1/k of leaving
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Fm in the next step. This means that the expected number of steps
the query can take in Fm is at most k.

The expected number of steps in a phase, h(Fi) = τ`(Fi), so by
(2.5) it then holds that:

h(Fi) ≤ (1 + 1/2k)h(Fm) ≤ k + 1/2 (2.6)

for all i ∈ {1, . . . , m} and also for FR. There are at most k phases,
so this implies that τ ≤ k2 + k/2, which contradicts our assumption
for all k ≥ 2.

Thus the original assumption implies that rm−1 ≤ rm/2 ≤ N/2.
But by an identical argument for Fm−1, we can show that rm−2 ≤
rm−1/2. It follows by iteration that

ri ≤ 1
2m−i

N.

and specifically:

r1 ≤ 1
2m−1

N ≤ 2
k+2
k+1 ≤ 4.

This means that F1 contains at most 4 points, which means that
h(F1) ≤ 4 ≤ k for k ≥ 4, and by the argument in (2.6), τ ≤ k2 +
k/22. This again contradicts the original assumption. The result
follows.

Theorem 2.2 gives us an alternate distributional criterion for at-
taining O(log2 N) expected greedy pathlengths. Since Kleinberg
showed that this cannot hold for most distributions, the balanced
distributions must be close to the critical, harmonic case.

2.2.3 Other Graphs

We attempt to see how Theorem 2.2 can be generalized to shortcut
graphs on more general base graphs than the circle. For the prelim-
inary results to hold, we need to limit ourselves to classes of finite
transitive graphs. The most simple examples of such graphs are,

2It may seem strange that we are here using that a constant is O(k). In fact,
this shows that the bound in the theorem could strengthened somewhat, though
it would have the same dominant order in k.
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except for the circle itself, toric lattices of higher dimensions with
the same circumference in each dimension. While we used a directed
ring for simplicity previously, we cannot have a directed base graph
in higher dimensions (it is easy to see that not even Kleinberg’s can
hold if you do), and thus use an undirected base.

In order to use a proof like that of Theorem 2.2 on a class of
graphs we need the following property. For a given graph G, we let
Br(x) be a ball of radius r around a vertex x, that is

Br(x) = {y ∈ V s.t. dG(x, y) ≤ r}

where dG(x, y) is the geodesic distance in G. Equivalently let Sr(x) =
∂Br(x), the sphere of radius r around x in the graph.

Definition 2.3. A class of graphs is called fair, if there exist a ∈
(0, 1) and c ∈ (0, 1], such that for any graph G in the class:

|Sr(x) ∩Bq(0)| ≥ c|Sr(x)|

for all x ∈ V , and adG(x, 0) = q ≤ r ≤ dG(x, 0).
That is to say: if q is a fraction a of the distance from a vertex x

to 0, a sphere of radius at least q around x intersects a ball of radius
q around 0 on at least a fixed portion of its points.

On top of the base graph, we add a configuration of directed
shortcut edges as before. The definition of hitting probabilities and
balanced distributions are also the same.

For a fair class of base graphs, with fixed values for a and c, a
similar argument to the proof of Theorem 2.2 can be made. Given
a base graph, divide the space into approximately log1/a N “rings”
around 0 where we expect to spend as much time in each one. That
is let the first ring have the form:

F1 =
r1⋃

r=1

Sr(0)

where r1 is smallest value such that `(F1) ≥ 1/ log1/a N . And then
the other rings as above. Since h(Sr(0)) ≤ 1 for all r, ` of each phase
will again be approximately the same.
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0 X

Figure 2.2: A illustration of the “fairness” property of a class of
graphs. Every circle (the dotted line) of radius between q = ad(x, 0)
and d(x, 0) must have some portion of its vertices within q of 0.
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Now, if such a ring has outer radius d and inner radius greater
than ad then by “fairness” there is a shortcut leading to a point
in a phase closer to 0 with at least probability c log1/a N in each
step. Thus can we spend only a logarithmically bounded time in the
ring. If this holds for one ring it holds for all, if all rings have an
outer radius that is 1/a of their inner radius, the smallest must have
radius bounded a constant. A similar contradiction is to the one
above is thus derived, and thus a bound of order (log n)2 is found for
all graphs in the class.

It is relatively easy to see that the square grids (Zd mod N) are
balanced. See for instance Figure 2.2 for the natural intuition. A
proof method is sketched, formalizing everything is tedious but not
difficult.

Lemma 2.4. For every k, the class graphs of finite, toric, k-dimensional
square grids are fair, with a = 3/4 and c ≥ (2k4k−1)−1.

Proof. (Sketch) Fix such a graph, and let d be its distance function.
Let δ = d(x, 0) and let z be a point vertex halfway between them on
a minimal path. Construct S 1

4
δ(z). All the points on this sphere lie

within aδ of 0, and at least one side, and thus at least

(
1
4
δ)k−1

vertices, lie on the circle Saδ(x). By moving this side “towards” 0,
we can keep it on Sr(x) for all aδ ≤ r ≤ δ while keeping all of its
points within aδ of 0. Thus at least

(
1
4
δ)k−1/(2dδk−1) = c

of the points on any such sphere lie in Baδ(0).

Whether it can be shown that other classes of graphs, perhaps all
that are generated from subsets of a transitive and amenable infinite
graph, have the property we have called fairness is currently an open
question to us.
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2.3 Re-wiring Algorithm

In this section, we propose an algorithm for the re-wiring of shortcut
graphs of the type described above. Running the algorithm modifies,
in each step, the destinations of the shortcut edges of vertices in the
graph in a random fashion. It is a steady-state algorithm in the
sense that it neither creates nor destroys edges: it simply shifts the
destinations of the single existing shortcut at each vertex.

In the sense that we propose a generative process which might
explain why navigable networks arise, this is similar to the celebrated
preferential attachment model for power law networks of Barabási
and Albert. However, it is a not a growth model for the network
since the number of nodes and edges never changes, and is thus
more similar to the model discussed in [15].

The proposed algorithm is as follows:

Algorithm 2.5. Let (V, Es) be the directed graph of shortcuts at
time s. From each vertex there is exactly one edge. Let 0 < p < 1.
Then (V,Es+1) is defined as follows.

1. Choose ys+1 and zs+1 uniformly from V .

2. If ys+1 6= zs+1, do a greedy walk from ys to zs along the lattice
and the shortcuts of Es. Let x0 = ys+1, x1, x2, ..., xt = zs+1

denote the points of this walk.

3. For each x0, x1, ..., xt−1 independently with probability p replace
its current shortcut with one to zs+1.

After a walk is made, Es+1 is the same as Es, except that the
shortcut from each node in walk s+1 is with probability p replaced by
an edge to the destination. In this way, the destination of each edge
is a sample of the destinations of previous walks passing through
it. The claim is that updating the shortcuts using this algorithm
eventually results in a shortcut graph with greedy pathlengths of
O(log2 n).

The value of p is a parameter in the algorithm. It serves to
disassociate the shortcut from a vertex with that of its neighbors.
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Figure 2.3: A shortcut graph generated by our algorithm (N = 100).

For this purpose, the lower the value of p > 0 the better, but very
small values of p will also lead to slower sampling. It is hard to state
an optimal value for p but there are simple heuristic arguments for
why p should reasonably be on the order of one over the expected
length of the greedy walks.

2.3.1 Computer Simulation

Simulations indicate that the algorithm gives results which scale as
desired in the number of greedy steps, and that the distribution
approximates HN/d(x, y).

The results in the directed one-dimensional case can be seen in
Figure 2.4. To get these results, the network is started with no
shortcuts, and then the algorithm is run 10N times to initialize the
references. The value of p = .10 is used. The greedy distance is then
measured as the average of 100,000 walks, each updating the graph
according to the algorithm. The effect of running the algorithm,
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rather than freezing one configuration, seems to be lower the variance
of the observed value.

The square root of the mean greedy distance increases linearly as
the network size increases exponentially, just as we would expect. In
fact, as can be seen, our algorithm leads to better simulation results
than choosing from Kleinberg’s distribution. Doubling the network
size is found to increase the square route of the greedy distance by
circa 0.41 when links are selected using our algorithm, compared to
an increase of about 0.51 when Kleinberg’s model is used. (In fact,
in with Kleinberg’s model we can use (2.3) to calculate numerically
exact values for τ , allowing us to confirm this figure.)

In Figure 2.4 the marginal distribution of shortcut lengths is
plotted. It is roughly harmonic in shape, except that it creates less
links of length close to the size of the network. This may be part
of the reason why it is able to outperform Kleinberg’s model: while
Kleinberg’s model is asymptotically correct, this algorithm takes into
account finite size effects. (This reasoning is similar to that of the
authors of [11]. Like them, we have no strong analytic arguments for
why this should be the case, which makes it a tenuous argument at
best.)

The algorithm has also been simulated to good effect using base
graphs of higher dimensions. Figure 2.5 shows the mean greedy dis-
tance for two dimensional grids of increasing size. Here also, the
algorithm creates configurations that seem to display square loga-
rithmic growth, and which perform considerably better than explicit
selection according to Kleinberg’s model.

2.3.2 Markov Chain View

Each application of Algorithm 2.5 defines the transition of a Markov
chain on the set of shortcut configurations, Γ. The Markov chain in
question is defined on a finite (if large) state space. If it is irreducible
and aperiodic, it thus converges a unique stationary distribution.

Theorem 2.6. The Markov chain (Es)s≥0 is irreducible and aperi-
odic.

Proof. Aperiodic: There is a positive probability that ys = zs in
which case nothing happens at step s.
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Figure 2.4: Data from the tables in Section 2.3.1 on the expected
greedy walk length using our selection algorithm, compared to selec-
tion according the harmonic distribution.

3

4

5

6

7

8

9

-2 0 2 4 6 8

Sqrt. Mean Pathlength

log2 of N/10000

algorithm
harmonic

Figure 2.5: The expected greedy walk time of the selection algorithm,
compared to selection according to harmonic distances, in a two
dimensional base grid.
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Figure 2.6: The inverse of distribution of shortcut distances, with
N = 100000, p = 0.10. The straight line is the inverse of the har-
monic distribution.

Irreducible: We need to show that there is a positive probability
of going from any shortcut configuration to any other in some finite
number of steps. This follows directly if there is a positive probability
that we can “re-point” the shortcut starting at a vertex x to point
at a given target y without changing the rest of the graph. But the
probability of this happening in a single iteration is:

≥ 1
N

1
N

p(1− p)N−2 > 0.

Thus there does exist a unique stationary shortcut distribution,
which assigns some positive probability to every configuration. The
goal is to motivate that this distribution leads to short greedy walks.

We can look at the marginal distribution of the shortcut distances
at every point. The shortcut from a vertex x at any time is simply
a sample of the destination of the previous walks that x has seen.
Under the stationary distribution this should not change with time,
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so
`(x, z) = P(Z = z|XY

Z (t) = x for some t).

Using Bayes’ theorem, we can related this to the hitting probability.

`(x, z) = P(Z = z|XY
Z (t) = x for some t)

=
P(XY

Z (t) = x for some t|Z = z)P(Z = z)∑
ξ 6=x P(XY

Z (t) = x for some t|Z = ξ)P(Z = ξ)

The first multiple in the numerator is the hitting probability h(x, z).
It then follows from the uniform distribution of Z that:

`(x, z) =
h(x, z)∑

ξ 6=x h(x, ξ)
=

h(x, z)∑N−1
ξ=1 h(ξ)

This shows that the marginal shortcut distribution at each point
under the stationary distribution is balanced, and it is tempting
to apply Theorem 2.2. However, that theorem assumed that the
shortcuts had been chosen independently at each vertex, which is
not the case here.

There are two sources of dependencies between the shortcuts of
neighboring vertices. Firstly, there is a chance that they sampled the
destination of the same walk. When p is large, this dependency is
substantial, and we see a highly detrimental effect even in the sim-
ulations. By using a small p, however, this dependence is muted.
Another, more subtle dependence, has to do with the way the short-
cuts of vertices around a vertex x may affect the destinations of the
walks it sees. If x + 1 has a shortcut to x− 10, that will make it less
likely for x see walks for places “beyond” x − 10 since many such
walks will have followed the shortcut at x+1, and thus skipping over
x.

The first dependence, that of sampling from the same walk, can
be handled by modifying the algorithm to make sure we do not sam-
ple more than once for each walk. Take p ≤ 1/N and once a walk is
completed, we choose to update exactly one of its links with proba-
bility pw where w is the length of the walk. Which link to update
is then chosen uniformly from the walk. This way, the probability a
vertex updates its shortcut when hit by a walk is still always p, but
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we never sample two shortcuts from the same walk. The modified
algorithm is less natural, but clearly a good approximation of the
original for small p values. Although it is more complicated, it is
probably not harder to analyze, since it allows for the simplifying
assumption that each edge is chosen from a different greedy walk.

The other dependencies are more complicated, and there is no
easy way to modify the algorithm to remove them. However, it is
worth noting that it is hard to see why these dependencies (unlike
the first type) would be destructive for greedy routes. In fact, it
makes sense that if x in our example gets few walks destined beyond
x− 10 because of the shortcut present at x + 1, then it should also
choose a shortcut to beyond x− 10 with a smaller probability.

In the proof of Theorem 2.2 we use independence only to show
that if the probability of having a shortcut out of a phase at the very
furthest point is ρ, then the expected steps in the phase is bounded
by 1/ρ. There is little reason to believe this wouldn’t hold under the
algorithm, since if the link from the furthest point doesn’t take us out
the phase, it either goes to a point within the phase, or overshoots
the destination. If it goes to a point within the phase, then we follow
it, and the presence of that shortcut should not interfere with the
shortcut from the destination. If it, on the other hand, overshoots,
then by the above argument it should make it more likely that the
following ones don’t overshoot, giving a us a better than independent
probability of leaving the phase.

Formalizing the requirements on the dependence, and proving
that our stationary distribution indeed agrees with them, is the main
open problem left to resolve about this work.

2.4 Conclusion

The study of navigable networks is still in its infancy, but many inter-
esting results have already been found, and the practical relevance to
such fields as computer networks is beyond doubt. In this paper we
have presented a different way of looking at the dynamics that cause
networks to be navigable, and we have presented an algorithm which
may explain how navigable networks arise naturally. The algorithm’s
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simplicity also means that it can be useful in practice for generating
networks that can easily be searched, and important property for
many structures on the Internet.

While many questions about these networks in general, and our
algorithm in particular, remain unanswered, the prospects of going
further with this work seem good. We are hopeful that these ideas
will be fruitful, leading to further analysis of searching and routing
in networks of all kinds.
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Chapter 3

Distributed Routing1

3.1 Introduction

The modern view of the so called “small-world phenomenon” can
be dated back to the famous experiments by Stanley Milgram in
the 1960s [28]. Milgram experimented with people’s ability to find
routes to a destination within the social network of the American
population. He concluded that people were remarkably efficient at
finding such routes, even towards a destination on the other side of
the country. More recent studies using the Internet have come to the
same conclusion, see [13].

Models to explain why graphs develop a small diameter ([37],
[8], [35]), have been around for some times. Generally, these mod-
els specify the mixing of a structured base graph, such a as grid,
and random “shortcuts” edges between nodes. However, it was not
until Jon Kleinberg’s work in 2000 [23] that a mathematical model
was developed for how efficient routing can take place in such net-
works. Kleinberg showed that the possibility of efficient routing
depends on a balance between the proportion of shortcut edges of
different lengths with respect to coordinates in the base grid. Un-
der a specific distribution, where the frequency of edges of different

1This chapter is due to be presented, as “Distributed Routing in a Small
World” at the SIAM ALENEX Workshop on experimental algorithms in January
2006. I would like to thank the reviewers for their input.
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lengths decreases inverse proportionally to the length, simple greedy
routing (always walking towards the destination) can find routes in
O(log2(n)) steps on average, where n is the size of the graph.

3.1.1 Motivation

Kleinberg’s result is sharp in the sense that graphs where edges are
chosen from a different distribution are shown not to allow for effi-
cient searching. However, the small-world experiments seem to show
that greedy-like routing is efficient in the world’s social network. This
indicates that some element of Kleinberg’s model is present in the
real world. In [24] and [36] this is motivated by reason of people’s
group memberships2. Several dynamic processes by which networks
can evolve to achieve a similar edge distribution have also been pro-
posed recently, for example, in [11], as well as in forthcoming work
by this author [32].

However, in Kleinberg’s search algorithm, the individual nodes
are assumed to be aware of their own coordinates as well as those of
their neighbors and the destination node. In the case of real world
data, it may be difficult to identify what these coordinates are. In
fact the participant nodes may be unaware of anything but their
immediate neighborhood and thus oblivious of the global structure
of the graph, and, importantly for this work, of geographic (or other)
coordinates. For example, in peer-to-peer overlay networks on the
Internet, one may wish to automatically find routes without relying
on information about the local user, let alone his neighbors or the
routes target. In such a situation, how can we search for short paths
from one node to another?

3.1.2 Contribution

With this in mind, this paper attempts to return to Milgram’s orig-
inal problem of finding paths between people in social networks.
Starting from an unmarked shortcut graph and no other information
on the coordinates, we attempt to fit it against Kleinberg’s model

2Roughly: When a group is twice as large, people in it are half as likely to
know each other.
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so as to make efficient searches possible. Taking as hypothesis that
the graph was generated by applying Kleinberg’s distribution model
to a base graph with co-ordinate information, we attempt to recover
the embedding. We approach this as a statistical estimation prob-
lem, with the configuration of positions in the grid assigned to each
node as a (multi–dimensional) unknown parameter. With a good es-
timate for this embedding, it is possible to make greedy routing work
without knowing the original positions of the nodes when the graph
was generated. We employ a Markov Chain Monte-Carlo (MCMC)
technique for fitting the positions.

We summarize our contributions as follows:

1. We give an MCMC algorithm to generate an embedding of a
given graph into a one or two dimensional (toric) grid which is
tuned to the distributions of Kleinberg’s model.

2. This method is tested using artificially generated and con-
trolled data: graphs generated according to the ideal model
in one and two dimensions. The method is demonstrated to
work quite well.

3. It is then applied to real social network data, taken from the
“web of trust” of the users of an email cryptography program.

4. Finally, it is observed that the method used can be fully dis-
tributed, working only with local knowledge at each vertex.
This suggests an application to routing in decentralized net-
works of peers that only connect directly to their own trusted
friends in the network. Such networks, known as Friend-to-
Friend networks of Darknets, have so far been limited to com-
munication only in small cliques, and may become much more
useful if global routing is made possible.

5. Our algorithm can thus be viewed also as a general purpose
routing algorithm on arbitrary networks. It is tailored to “small
world” networks, but appears to also work quite well for a more
general class of graphs.
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3.1.3 Previous Work

Different methods of searching social networks and similar graphs
have been discussed in previous work. In [3] a method is proposed
for searching so called “power-law networks”, either by a random
walk or by targeting searches at nodes with high degree. Because
such graphs have a highly skewed degree distribution, where a small
set of nodes are connected to almost everyone, the methods are found
to work well. The first author of that paper and a co-author recently
investigated the problem of searching social networks in [2]. There
they found that power-law methods did not work well, and instead
attempted to use Kleinberg’s model by trying to identify people’s
positions in some base graph based on their characteristics (where
they live, work, etc). This was found to work well on a network
with a canonical, highly structured base graph (employees of Hewlett
Packard) but less well on the social network of students at Stanford
University. Similarly Liben-Nowell et. al. [26] performed greedy
searches using the town names as locations in the network of writers
on the website “LiveJournal”. They claim positive results, but con-
sider searches successful when the same town as the desired target
is reached: a considerably easier task than routing all the way.

In [38] the authors attempt to find methods to search a network
of references between scientific authors. They mention Kleinberg’s
model, but state:

“The topology of referral networks is similar to a two-
dimensional lattice, but in our settings there is no global
information about the position of the target, and hence
it is not possible to determine whether a move is toward
or away from the target”.

It is the necessity of having such information that we attempt to
overcome here.

3.2 Kleinberg’s Model

Kleinberg’s small-world model, like that of Watts and Strogatz [37]
which preceded it, starts with a base graph of local connections,
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onto which a random graph of shortcut edges (long range contacts)
is added. In its most basic form, one starts with a k-dimensional
square lattice as the base network, and then adds q directed random
edges at each node, selected so that each such shortcut edge from x
points to y with probability:

`(x, y) =
1

d(x, y)kHk(n)

where d denotes lattice distance in the base graph, n the size of the
network, and Hk is a normalizing constant.

Kleinberg showed that in this case so-called greedy routing finds
a path from any point to any other in, on average, O(log2(n)) steps.
Greedy routing means always picking the neighbor (either through
a shortcut or the base graph) which is closest to the destination,
in terms of the lattice distance d, as the next step. Since routing
within the base graph is permitted, the path strictly approaches the
destination, and the same point cannot be visited twice.

In order to make the model more applicable to the real world, it
is desirable to use the base graph only as a distance function between
nodes, and thus only use the shortcut edges when routing. The ne-
cessity of a strictly approaching path existing then disappears, and
we are left with the possibility of coming to a dead-end node which
has no neighbor closer to the destination than itself. Kleinberg him-
self dealt with this issue in [24], working on non-geographical models,
and there used q (node degree) equal to κ log2(n) for a constant κ.
In this case it is rather easy to see that κ can be chosen so as to
make the probability that any node in the network is dead-end for a
given query is arbitrarily small for all sizes n.

Actually, it suffices to keep the probability that a dead-end is en-
countered in any given route small. By approximate calculations one
can see that this should hold if q = Θ(log(n) log log(n))3. In practice
we find that scaling the number of links with log(n) preserves the
number of paths that do not encounter a dead end for all Kleinberg
model graphs we have simulated.

3Roughly: The probability that a link will not be dead-end to a query de-
creases with (log n)−1. With c log(n) log log(n) links per node, the probability
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3.3 The Problem

The problem we are faced with here is this: given a network, pre-
sumed to be generated as the shortcuts in Kleinberg’s model (in some
number of dimensions), but without any information on the position
of the nodes, can we find a good way to embed the network into a
base grid so as to make the routing between them possible? This
may be viewed as a parametric statistical estimation problem. The
embedding is thus seen as the model’s parameter, and the data set
is a single realization of the model.

Seen from another perspective, we are attempting to find an algo-
rithmic approach to answering the fundamental question of greedy
routing: which of my neighbors is closest to the destination? In
Kleinberg’s model this is given, since each node has a prescribed po-
sition, but where graphs of this type occur in real life, that is not
necessarily the case. The appeal of the approach described below
is that we can attempt to answer the question using no data other
than the graph of long connections itself, meaning that we use the
clustering of the graph to answer the question of who belongs near
whom.

Our approach is as follows: we assign positions to the nodes
according to the a-posteriori distribution of the positions, given that
the edges present had been assigned according to Kleinberg’s model.
Since long edges occur with a small probability in the model, this
will tend to favor positions so that there are few long edges, and
many short ones.

3.4 Statement

Let V be a set of nodes. Let φ be a function from V onto G, a
finite (and possibly toric) square lattice in k dimensions4. φ is the
configuration of positions assigned ! to the nodes in a base graph G.
Let d denote graph distance in G. Thus for x, y ∈ V , d(φ(x), φ(y))

that a given node is a dead-end is thus bounded by (log n)θ. θ can be made large
by choosing a large c, thus making the probability of encountering a node in the
O(log n)2 nodes encountered in a walk small.
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denotes the distance between respective positions in the lattice.
Let E denote a set of edges between points in V , and let them be

numbered 1, . . . ,m. If we assume that the edges are chosen according
to the Kleinberg’s model, with one end fixed to a particular node
and the other chosen randomly, then the probability of a particular
E depends on the distance its edges cover with respect to φ and G.
In particular, if we let xj and yj denote the start and end point,
respectively, of edge j, then:

Pr(E|φ) =
m∏

i=1

1
d(φ(xi), φ(yi))kHG

(3.1)

where HG is a normalizing constant.
When seen as a function of φ, (3.1) is the likelihood function of

a certain configuration having been used to generate the graph. The
most straightforward manner in which to estimate φ from a given
realization E is to choose the maximum likelihood estimate, that is
the configuration φ̂ which maximizes (3.1). Clearly, this is the same
as configuration which minimizes the product (or, equivalently, log
sum) of the edge distances. Explicitly finding φ̂ is clearly a difficult
problem: in one dimension it has been proven to be NP-complete
[17], and there is little reason to believe that higher dimensions will
be easier. There may be hope in turning to stochastic optimization
techniques.

Another option, which we have chosen to explore here, is to use
a Bayesian approach. If we see φ as a random quantity chosen with
some probability distribution from the set of all possible such config-
urations (in other words, as a parameter in the Bayesian tradition),
we can write:

Pr(φ|E) =
Pr(E|φ) Pr(φ)

Pr(E)
(3.2)

which is the a-posteriori distribution of the node positions, having
observed a particular set of edges E. Instead of estimating the max-
imum likelihood configuration, we will try to assign configurations
according to this distribution.

4In our experiments below, we focus mostly on the one dimensional case, with
some two dimensional results provided for comparisson purposes.
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3.4.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a remarkable algorithm used
in the field of Markov Chain Monte-Carlo. It allows one, given a
certain distribution π on a set S, to construct a Markov chain on
S with π as its stationary distribution. While simulating a known
distribution might not seem extraordinary, Metropolis-Hastings has
many properties that make it useful in broad range of applications.

The algorithm starts with a selection kernel α : S × S 7→ [0, 1].
This assigns, for every state s, a distribution α(s, r) of states which
may be selected next. The next state, r, is selected according to this
distribution, and then accepted with a probability β(s, r) given by a
certain formula of α and π. If the state is accepted, it becomes the
next value of the chain, otherwise the chain stays in s for another
time-step. If r is the proposed state, then the formula is given by:

β(s, r) = min
(

1,
π(r)α(r, s)
π(s)α(s, r)

)
.

The Markov chain thus defined, with transition Matrix P (s, r) =
α(s, r)β(s, r) if s 6= r (and the appropriate row normalizing value if
s = r), is irreducible if α is, and can quite easily be shown to have π
as its stationary distribution, see [19], [21]. The mixing properties of
the Markov chain depend on α, but beyond that the selection kernel
can be chosen as need be.

3.4.2 MCMC on the Positions

Metropolis-Hastings can be applied to our present problem, with the
aim of constructing a chain on the set of position functions, S = GV ,
that has (3.2) as its stationary distribution 5. Let α be a selection
kernel on S, and φ2 be chosen by α from φ1. It follows that, if we let
α(φ1, φ2) = α(φ2, φ1), and assume a uniform a-priori distribution,
then:

5Another way of looking at this is as an example of Simulated Annealing, which
uses the Metropolis-Hastings method to try to minimize an energy function. In
this case, the energy function is just the log sum of the edge distances, and the
β coefficient is 1.
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β(φ1, φ2) = min
(

1,
Pr(E|φ2)
Pr(E|φ1)

)

= min

(
1,

m∏

i=1

d(φ1(xi), φ1(yi))k

d(φ2(xi), φ2(yi))k

)

Let φ2 be an x, y-switch of φ1 if φ1(x) = φ2(y), φ1(y) = φ2(x), and
φ1(z) = φ2(z) for all z 6= x, y. In such cases, the above simplifies by
cancellation to:

β(φ1, φ2) = min


1,

∏

i∈E(x∨y)

d(φ1(xi), φ1(yi))k

d(φ2(xi), φ2(yi))k


 (3.3)

where E(x∨ y) denotes the edges connected to x or y. This function
depends only on edge information that is local to x and y.

We are now free to choose a symmetric selection kernel according
to our wishes. The most direct choice is to choose x and y randomly
and then to select φ2 as the x, y-switch of φ1. This is equivalent to
the kernel:

α(φ1, φ2) =

{
1/(n +

(
n
2

)
) if x, y-switch

0 otherwise.
(3.4)

The Markov chain on S with transition matrix

P (φ1, φ2) = α(φ1, φ2)β(φ1, φ2)

with α and β given by (3.4) and (3.3) respectively, is thus the
Metropolis-Hastings chain with (3.2) as its stationary distribution.
Starting from any position function, it eventually converges to the
sought a-posteriori distribution.

A problem with the uniform selection kernel is that we are at-
tempting to find a completely distributed solution to our problem,
but there is no distributed way of picking two nodes uniformly at
random. In practice, we instead start a short random walk at x, and
use as y the node where the walk terminates. This requires no cen-
tral element. It is difficult to specify the kernel of selection technique
explicitely, but we find it more or less equivalent to the one above.
See Section 3.8 below.
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3.5 Experiments

In order to test the viability of the Markov Chain Monte-Carlo
method, we test the chain on several types of simulated data. Work-
ing with the one-dimensional case, where the base graph is a cir-
cle, we simulate networks of different sizes according to Kleinberg’s
model, by creating the shortcuts through random matching of nodes,
and with the probability of shortcuts occurring inverse squarely pro-
portional to their length. We then study the resulting configuration
in several ways, depending on whether the base graph is recreated
after the experiment, and whether, in case it is not, we stop when
reaching a dead-end node of the type described above.

We also study the algorithm in two dimensions, by simulating
data on a grid according to Kleinberg’s model, and using the appro-
priate Markov chain for this case. Finally, we study some real life
data sets of social networks, to try to determine if the method can
be applied to find routes between real people.

The simulator used was implemented in C on Linux and Unix
based systems. Source code, as well as the data files and the plots
for all the experiments, can be found at:

http://www.math.chalmers.se/~ossa/swroute/

3.6 Experimental Methodology

3.6.1 One-Dimensional Case

We generated different graphs of the size n = 1000∗2r, for r between
0 and 7. The base graph is taken to be a ring of n points. Each
node is then given 3 log2 n random edges to other nodes. Since all
edges are undirected, the actual mean degree is 6 log2 n, with some
variation above the base value. This somewhat arbitrary degree is
chosen because it keeps the probability that a route never hits a dead
end low when the edges are chosen according to Kleinberg’s model.
Edges are sent randomly clockwise or counterclockwise, and have
length between 1 and n/2, distributed according to three different
models.
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1. Kleinberg’s model, where the probability that the edge has
length d is proportional to 1/d.

2. A model with edges selected uniformly at random between
nodes.

3. A model where the probability of an edge having length d is
proportional to 1/d2.

Both the latter cases are non-optimal: the uniform case represents
“too little clustering”, while the inverse square case represents “too
much”. In Kleinberg’s result, the two types of graphs are shown
not to have log-polynomial search times in different ways: too much
clustering means not enough long edges to quickly advance to our
destination, too little means not enough edges that take even closer
when we are near it.

Performance on the graphs can be measured in three different
ways as well. In all cases, we choose two nodes uniformly, and at-
tempt to find a greedy route between them by always selecting the
neighbor closest (in terms of the circular distance) to the destination.
The difference is when we encounter a dead end – that is to say a
node that has no neighbor closer to the destination then itself. In
this case we have the following choices on how to proceed:

1. We can terminate the query, and label it as unsuccessful.

2. We can continue the query, selecting the best node even if it is
further from the destination. In this case it becomes important
that we avoid loops, so we never revisit a node.

3. We can use a “local connection” to skip to a neighbor in the
base from the current node, in the direction of the destination.

For the second case to be practical, it is necessary that we limit
the number of steps a query can take. We have placed this limit as
(log2 n)2, at which point we terminate and mark the query unsuc-
cessful. This value is of course highly arbitrary (except in order), and
always represents a tradeoff between success rate and the mean steps
taken by successful queries. This makes such results rather difficult
to analyze, but it is included for being the most realistic option, in
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the sense that if one was using this to try to search in a real social
network, the third case is unlikely to be an option, and giving up, as
in the first case, is unnecessary.

We look at each result for the graph with the positions as they
were when it was generated, after shuffling the positions randomly,
and finally with positions generated by a running the Markov Chain
for 6000n iterations. It would, of course, be ideal to be able to base
such a number off a theoretical bound on the mixing time, but we do
not have any such results at this time. The number has been chosen
by experimentation, but also for practical purposes: for large n the
numerical complexity makes it difficult to simulate larger orders of
iterations in practical time-scales.

Due to computational limitations, the data presented is based
off only one simulation at every size of the graph. However, at least
for graphs of limited size, the variance in the important qualities has
been seen to be small, so we feel that the results are still indicative of
larger trends. The relatively regular behavior of the data presented
below strengthens this assessment.

After shuffling and when we continue at dead ends, the situation
is equivalent to a random walk, since the greedy routing gains from
the node positions. Searching by random walk has actually been
recommended in several papers ([3], [18]), so this gives the possibility
of comparing our results to that.

3.6.2 Two Dimensional Case

We also simulate Kleinberg’s model in two dimensions, generating
different graphs of the size n = 1024 ∗ 4r, for r between 0 and 3. A
toric grid as the base graph (that is to say, each line is closed into
a loop). Shortcuts were chosen with the vertex degrees as above,
and with ideal distribution where the probability that two nodes are
connected decreasing inverse squared with distance (the probability
of an edge having length d is still proportional to 1/d, but as d
increases there are more choices of nodes at that distance). We
do this to compare the algorithm in this setting to that in the one
dimensional case.

We also try, for graphs with long range connections generated
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against a two dimensional base graph, to use the algorithm in one
dimension, and vice versa. This is to ask how crucial the dimension
of the base grid is to Kleinberg’s model: whether the essential char-
acteristics needed for routing carry over between dimensions. Any
conclusion on the subject, of course, is subject to the question of the
performance of the algorithm.

3.6.3 Real World Data

Finally, we test the method on a real graph of social data. The graph
is the “web of trust” of the email cryptography tool Pretty Good
Privacy (PGP) [1]. In order to verify that the person who you are
encrypting a message for really is the intended recipient, and that the
sender really is who he claims to be, PGP has a system where users
cryptographically sign each others keys, thereby vouching for the
key’s authenticity. The graph in question is thus a sample of people
that know each other “in real life” (that is outside the Internet),
since the veracity of a key can only be measured through face to face
contact.

We do not look at the complete web of trust, which contained
about 23,000 users, but only at smaller subsets. The reason for this
is two-fold. Firstly, the whole network is not a connected component.
Secondly a lot of the nodes in the graph are in fact leaves, or have
only one or two vertices. Under such conditions, the algorithm (or
any greedy routing for that matter) cannot be expected to work.

These were created by starting a single user as the new graph’s
only vertex, and recursively growing the graph in the following man-
ner. If Gn is the new graph at step n:

1. Let ∂Gn be the vertices with at least one edge into Gn, but
who are not in Gn themselves.

2. Select a node x randomly from those members of ∂Gn who
have the greatest number of edges into Gn.

3. Let Gn+1 be the graph induced by the vertices of Gn and x.

4. Repeat until Gn+1 is of the desired size.
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Figure 3.1: The success-rate of queries when terminating at dead-end
nodes, on a graph generated by the ideal model.

This procedure is motivated by allowing us to get a connected, dense,
“local” subgraph to study. It is closest we can come to the case
where, having access to the base graph, one uses a only the nodes in
a particular section of it and the shortcuts between them.

Daily copies of the web of trust graph are available at the follow-
ing URL:

http://www.lysator.liu.se/~jc/wotsap/

3.7 Experimental Results and Analysis

3.7.1 One Dimensional Case

Experimental results in the one dimensional case were good in most,
but not all, cases. Some of the simulated results can be seen in
3.1 through 3.8. Lines marked as “start” show the values with the
graphs as they were generated, “random” show the values when the
positions have been reassigned randomly (this was not done for the
random matchings case, as there is no difference from the start),
and “restored” show the values after our algorithm has been used to
optimize the positions.
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Figure 3.2: Mean number of steps of successful queries when termi-
nating at dead-end nodes, on a graph generated by the ideal model.
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Figure 3.3: Mean number of steps of successful queries when allowed
to use local connections, on a graph generated by the ideal model.
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Figure 3.4: Mean number of steps of successful queries when ter-
minating after (log2(n))2 steps, on a graph generated by the ideal
model.
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Figure 3.5: Mean number of steps of successful queries when allowed
to use local connections, on a graph generated by random matchings.
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Figure 3.6: Mean number of steps of successful queries when ter-
minating after (log2(n))2 steps, on a graph generated by random
matchings.
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Figure 3.7: The success-rate of queries when terminating at dead-end
nodes, on a graph generated by random matchings.
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Figure 3.8: The success-rate of queries when terminating at dead-
end nodes, on a graph generated with connection probabilities inverse
square proportional to the length.

In the ideal graph model, when the original graph is known to
allow log polynomial routing, we can see that the algorithm works
well in restoring the query lengths. In particular, Figure 3.3, where
queries have been able to use the base graph, shows nearly identical
performance before and after restoration.

In the cases where queries cannot use the local connections, we
see that proportion of queries that are successful is a much harder
property to restore than the number of steps taken. Figure 3.1 shows
this: for large graphs the number of queries that never encounter a
dead-end falls dramatically. A plausible cause for this is that it is
easy for the algorithm to place the nodes in the approximately right
place, which is sufficient for the edges to have approximately the
necessary distribution, but a good success rate depends on nodes
being exactly by those neighbors to which they have a lot edges.

Along with the ideal data, two non-ideal cases were examined. In
the first case, where the long range connections were added randomly,
the algorithm performs surprisingly well. At least with regard to
the number of steps, we can see a considerable improvement at all
sizes tested. See in particular Figures 3.6 and 3.5. However, it is
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Figure 3.9: Matching Kleinberg’s model in 2 dimensions against a
graph generated according to it. Success rate when failing at dead-
end nodes.

impossible for the success rate to be sustained for large networks
when the base graph is not used - in this case there simply is no
clustering in the graph - and as expected the number of successful
queries does fall as n grows (Figure 3.7.

The other non-ideal case, that of too much clustering, was the
one that faired the worst. Even though this leads to lots of short
connections, which one would believe could keep the success rate up,
this was not found to be the case. Both the success rate and the
mean number of steps of the successful queries were not found to
be significantly improved by the algorithm in this case. The results
in Figure 3.8 if particularly depressing in this regard. It should be
noted that it has been shown [27] that graphs generated in this way
are not small-world graphs - their diameter is polynomial in their
size, so there is no reason to believe that they can work well for this
type of application.

3.7.2 Two Dimensional Case

The algorithm was also simulated with a pure two dimensional model.
In general, the algorithm does not perform as well as in the one di-

57



 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1000  10000  100000

M
ea

n 
S

te
ps

Network Size

random
start

restored

Figure 3.10: Matching Kleinberg’s model in 2 dimensions against a
graph generated according to it. Mean number of steps of successful
queries when failing at dead-end nodes.
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Figure 3.11: Matching Kleinberg’s model in 2 dimensions against a
graph generated according to it. Mean number of steps of queries
when they are allowed to use local connections.
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Figure 3.12: The target function of the optimization (log sum of
shortcut distances) as the algorithm progresses. The graphs have
10000 nodes with edges generated using the ideal model. The values
are normalized by dividing by the log sum of the original graph: it
can be seen that we come much closer to restoring this value in 1
dimension.
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mensional case, but it performs better than against the one dimen-
sional algorithm did on the graphs generated from non-ideal models.
See Figures 3.9 to 3.11 for some of the data.

It seems that the algorithm proposed here simply does not func-
tion as well in the two-dimensional case. In Figure 3.12 the sum
of the logarithms of the shortcut distances for a graph is plotted
as the optimization is run for a very large number of iterations. It
indicates that results in two-dimensions cannot be fixed by simply
running more iterations, in fact, it seems like it fails to converge to
one completely.

Graphs generated according to the two dimensional model were
also given to the one dimensional algorithm, and vice versa. We
found that data from either model was best analyzed by fitting it
against a base graph of the same dimension - but the two dimensional
method actually did slightly better on one-dimensional data than
its own. For example at a network size of 4096, we were able to
restore a success rate of 0.670 when failing at dead-ends using the
two dimensional method for one dimensional data, but only 0.650 on
data from the two dimensional model. This indicates that the worse
performance in two dimensions may be largely due to Kleinberg’s
model in higher dimensions being more difficult to fit correctly.

3.7.3 Real World Data

We treated the real world data in the same way as the simulated
graphs. 2000 and 4000 vertex subgraphs were generated using the
procedure defined above, the nodes were given random positions in
a base graph, and then 6000n iterations of the Metropolis-Hastings
algorithm was performed. We tried embedding the graph both in
the one dimensional case (circle) and two (torus). In one dimension,
the results were as follows:
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Size 2000 4000
Mean degree 64.6 46.4
F Success 0.609 0.341
F Steps 2.99 3.24
C Succ 0.981 0.798
C Steps 13.4 26.0
LC Steps 4.58 7.21

Here “F Success/Steps” denotes the values when we fail upon
hitting a dead end, “C Succ/Steps” when we continue and “LC steps”
is the mean number of steps for queries that use the local connections
at dead ends.

The data was also tested using two-dimensional coordinates and
distance. The results are rather similar, with some of the tests per-
forming a little bit better, and some (notably the success rate when
failing on dead ends) considerably worse.

Size 2000 4000
F Success 0.494 0.323
F Steps 2.706 3.100
C Succ 0.984 0.874
C Steps 13.116 22.468
LC Steps 3.920 5.331

It perhaps surprising that using two dimensions does not work better,
since one would expect the greater freedom of the two dimensional
assignment to fit better with the real dynamics of social networks
(people are, after all, not actually one a circle). The trend was similar
with three-dimensional coordinates, which led to success rates of 0.42
and 0.26 respectively for the large and small graphs when failing at
dead-ends, but similar results to the others when continuing. As
can be seen from simulations above, the algorithm does not seem to
perform very well in general in higher dimensions, and this may well
be the culprit.6

6There is a general perception that the two-dimensional case represents re-
ality, since peoples geographical whereabouts are two-dimensional. We find this
reasoning somewhat specious. The true metric of what makes two people closer
(that is, more likely to know one another) is probably much more complicated
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The two thousand node case has about the same degree as the
simulated data from the graphs above, so we can compare the per-
formance. From this we can see that the “web of trust” does not
nearly match the data from the ideal model in any category. It does,
however, seem to show better performance than the uniform match-
ings in some cases - most notably the crucial criteria of success rate
when dropping at dead ends.

To look at the 4000 nodes case, the mean degree is considerably
less than the experiments presented below, and it the results are
unsurprisingly worse. In this case however, the dataset does have a
lot of nodes with only a few neighbors, and it is easy to understand
it is difficult for the algorithm to place those correctly.

At first glance, these results may seem rather negative, but we
believe there is cause for cautious optimism. For one thing, success
rates when searching in real social networks have always been rather
low. In [26], when routing using actual geographic data, only 13%
of the queries were successful. They used a considerably larger and
less dense graph than ours, but on the other hand they required
only that the query would reach the same town as the target. [2]
showed similar results when attempting to route among university
students. Real world Milgram type experiments have never had high
success rates either: Milgram originally got only around 20% of his
queries through to the destination, and a more recent replication of
the experiment using the Internet [13] had as few as 1.5% of queries
succeed.

Moreover, there have not been, to the authors knowledge, any
previously suggested methods for routing when giving nothing but
a graph. Methods suggested earlier for searching in such situations
have been to either walk randomly, or send queries to nodes of high
degree. With this in mind, even limited success may find practical
applications.

than just geography (the author of this article is, for instance, perhaps more likely
to know somebody working in his field in New Zealand, than a random person
a town or two away). In any case, there is a trade-off between the realism of a
certain base graph, and how well the optimization seems to function, which may
well motivate less realistic choices.
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3.8 Distributed Implementation and Practi-
cal Applications

The proposed model can easily be implemented in a distributed fash-
ion. The selection kernel used in the simulations above is not decen-
tralized, in that it involves picking two nodes x and y uniformly
from the set. However, the alternative method is that nodes start
random walks of some length at random times, and then propose to
switch with the node at which the walk terminates. Simulating this
with random walks of length log2(n)/2 (the log scaling motivated by
the presumed log scaling of the graphs diameter) did not perform
measurably worse in simulations than a uniform choice (nor on the
collected data in the last section)7. For example, in a graph of 64,000
nodes generated with the ideal distribution, we get(with the tests as
described above):

Test Success Rate Mean Steps
Fail 0.668 4.059

Continue 0.996 6.039
Base Graph 1.0 4.33

Once the nodes x and y have established contact (presumably
via a communication tunnel through other nodes), they require only
local data in order to calculate the value in (3.3) and decide whether
to switch positions. The amount of network traffic for this would be
relatively large, but not prohibitively so.

In a fully decentralized setting, the algorithm could be run with
the nodes independently joining the network, and connecting to their
neighbors in the shortcut graph. They then choose a position ran-
domly from a continuum, and start initiating exchange queries at
random intervals. It is hard to say when such a system could ter-
minate, but nodes could, for example, start increasing the intervals
between exchange queries after they have been in the network long.
As long as some switching is going on, of course, a nodes position

7The most direct decentralized method, that nodes only ever switch positions
with their neighbors, did not work well in simulation.
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would not be static, but at any particular time they may be reach-
able.

The perhaps most direct application for this kind of process,
when the base graph is a social network between people, is an overlay
network on the Internet, where friends connect only to each other,
and then wish to be able to communicate with people throughout
the network. Such networks, because they are difficult to analyze,
have been called “Darknets”, and sometimes also “Friend-to-Friend”
(F2F) networks.

3.9 Conclusion

We have approached a largely unexplored question regarding how to
apply small-world models to actually find greedy paths when only a
graph is presented. The method we have chosen to explore is a direct
application of the well known Metropolis-Hastings algorithm, and it
yields satisfactory results in many cases. While not always able to
restore the desired behavior, it leads to better search performance
than can be expected from simpler methods like random searches.

Much work remains to be done in the area. The algorithm de-
pends, at its heart, on selecting nodes who attempt to switch posi-
tions with each other in the base graph. Currently the nodes that
attempt to switch are chosen uniformly at random, but better perfor-
mance should be possible with smarter choice of whom to exchange
with. Something closer to the Gibbs sampler, where the selection
kernel is the distribution of the sites being updated, conditioned on
the current value of those that are not, might perhaps yield better
results.

Taking a step back, one also needs to evaluate other methods of
stochastic optimization, to see if they can be applicable and yield a
better result. No other such method, to the author’s knowledge, ap-
plies as directly to the situation as the Metropolis-Hastings/simulated
annealing approach used here, but it may be possible to adapt other
types of evolutionary methods to it.

Also, all the methods explored here are based on the geographic
models that Kleinberg used in his original small-world paper [23].

64



His later work on the dynamics of information [24] (and also [36]),
revisited the problem with hierarchical models, and finally a group
based abstraction covering both. It is possible to apply the same
techniques discussed below to the other models, and it is an inter-
esting question (that goes to the heart of how social networks are
formed) whether the results would be better for real world data.

The final question, whether this can be used successfully to route
in real life social networks is not conclusively answered. The results
on the limited datasets we have tried have shown that while it does
work to some respect, the results are far from what could be hoped
for. Attempting to apply this method, or any derivations thereof, to
other real life social networks is an important future task.
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